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Abstract

A detailed theoretical analysis is given for the impact of finite frequency deviation on the sen-

sitivity of dual-filter heterodyne Frequency Shift Keying (FSK) lightwave systems. Our analysis

provides closed-form signal-to-noise ratio (SNR) results for estimating the bit-error-ratio (BER)

performance of the system. These closed-form results provide an insight into the impact of fi-

nite frequency deviation 2Afd, laser linewidth Am, bit rate R6 , and IF filter bandwidths on the

system performance. It is shown that there is a well-defined relationship between the choice of

frequency deviation and the tolerable amount of laser phase noise. When there is no phase noise,

a frequency deviation of 2Afd = 0.72R6 is sufficient for 1 dB sensitivity penalty with respect to

infinite frequency deviation case; whereas for a linewidth of Am = 0.50R6 the required frequency

deviation increases to 2Af 4 = 3.42P6 for the same sensitivity penalty. The sensitivity degradation

can be very severe for a fixed linewidth as the frequency deviation gets smaller: for a linewidth

of 20% the sensitivity penalty is only 0.54 dB when the frequency deviation is infinite whereas

it is 3.48 dB when the frequency deviation is 2Afd = R. We also quantify the impact of finite

frequency deviation on optimum IF filter bandwidths. For a fixed linewidth, the optimum IF

filter bandwidth decreases as frequency deviation becomes smaller: for Am = 0.5R the optimum

IF filter bandwidth reduces from 714 to 3R1 when 2Afd reduces from very large values to 314.
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I. INTRODUCTION

The FSK heterodyne dual filter and single filter detection systems are examples of asynchronous

lightwave systems, whereby a relatively large laser diode (LD) spectral spread can be tolerated. That

makes the use of conventional DFB LD's possible which in turn is important for achieving a simple

and stable system [1]-[8]. The dual filter detection system is particularly attractive because it offers

a 3-dB higher receiver sensitivity than the single filter detection system [1]. The ideal performance

of dual filter heterodyne FSK lightwave systems were previously studied by several authors assuming

ideal conditions for the intermediate frequency (IF) and the frequency deviation between the two

frequencies of data transmission [2], [9], [10].

In particular, in [2], [9] and [10] the sensitivity degradation due to laser phase noise and shot noise

was studied assuming that the F and the frequency separation between the two tones are infinitely

large. In practical systems, however, these assumptions are not valid [1], 131, [4], [11], [12]. In this

paper, we study the impact of finite frequency deviation on the system performance. Our analysis

also includes the impact of laser phase noise and additive shot noise.

We show that there is a well-defined relationship between the choice of frequency deviation and

the tolerable amount of laser phase noise for a prescribed level of sensitivity degradation (e.g., 1

dB). Our results indicate that when there is no phase noise, a frequency deviation 2Ajd = 0.7214 is

sufficient for I dB sensitivity penalty with respect to infinite frequency deviation case; whereas, for

an IF linewidth of Av = 0.5014 the required frequency deviation increases to 2Afd = 3.42Rb for the

same sensitivity penalty. The influence of finite frequency deviation on the values of other important

system parameters such as optimum IF filter bandwidth and bit-error-ratio (BER) is also quantified.

It is demonstrated that for a fixed F linewidth value, the optimum IF filter bandwidth decreases as

the frequency separation between the two tones becomes smaller. As an example, for Av = 0.5R6 the

optimum IF filter bandwidth required reduces from 7R4 to 314 when 2Aif reduces from very large
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values to 314. Using the BElR results computed, sensitivity penalty due to finite frequency deviation

is quantified as a function of IF laser linewidth. Our results show that the sensitivity degradation

can be very severe for a fixed linewidth as the frequency deviation gets smaller. As an example,

for an IF linewidth of 20% the sensitivity penalty is only 0.54 dB when the frequency deviation is

extremely large (infinite); whereas it is 3.48 dB when the frequency deviation is 2Afd = Rb. In this

paper, we also investigate practically important suboptimum cases which do not use optimum IF

filter bandwidths. More specifically, we quantify the sensitivity degradation due to finite frequency

deviation for a fixed linewidth value when the IF filter bandwidth used is not optimized for different

frequency deviations.

The rest of this paper is organized as follows. In Section II we give a system description and

problem statement. Section ITI contains basic receiver equations, the signal-to-noise ratio, the bit-

error rate, and the main results of the paper. A physical interpretation of the main results obtained

is presented in Section IV. Finally, Section V contains the conclusions of this study.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

The block diagram of the dual filter optical heterodyne FSK receiver is shown in Figure 1. It was

shown in [9] that the total output current processed by such a receiver is

i 2.) I Ascos[(w + Aw)t + 0(t)] + n(t), for data = 1

Ascos[(w - Aw)t + 0(t)] + n(t), for data = 0

where As is the signal amplitude; nat) is the total noise process at the output of the balanced re-

ceiver; w = 2"rfj is the intermediate frequency (IF) in radians per second; 0t) is the total phase

noise due to the transmitter and local oscillator (LO) lasers; and Aw = 2vrAfd is the frequency

deviation in radians/sec. These quantities are given by the following expressions:

As a 2RVP5P amperes (2)
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n(t) = ni(t) - n2(t) amperes (3)

W =S - WO radians/second (4)

0(t) = s(t) - 4'w(t) radians (5)

2Aw w - tb radians/second (6)

where R is the detector responsivity; ni(t) and n 2 (t) are the noises of the two photodiodes; wS and

wow are the frequencies of the signal and the LO, respectively; Os(t) and Lo(t) are the phase noises

of the transmitter and LO lasers, respectively; and w, and coo are the frequencies of transmission for

data = 1 and data = 0, respectively.

The total phase noise 0(t) is defined by expression (5). Its derivative (t) has a zero-mean Gaus-

sian probability density fuction (pdf); the single-sided power spectral density (PSD) of (t) is given

by

S. (f)=4AV 0 < f < o (7)

where Av is the FWHM linewidth at the IF, i.e.,

AV = Avr + Avw (8)

where Ator and Avw are the linewidths of the transmitter and LO lars, respectively. The PSD

shape in (7) implies the Lorentzian laser lineshape.

The additive noise i(t) is composed of both the shot noise and the thermal noise. The single-

sided PSD of n(t) is

So = Y for 0 < f < oo amperes2 per hertz (9)
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where

i" -- 2eRPLo + un, amperes2 per hertz. (10)

In (10), e is the electron charge and Vr/- is the PSD of the thermal noise. Expression (9) implies

that the additive noise is white; this assumption may be inaccurate in systems having wide laser

linewidth or large bit rate. The autocorrelation function of n(t) is given by

R,(tl, t2) - E[n(tI)n(t 2)] = 0.5u6(t, - t2 ) (11)

In previous studies on dual filter heterodyne FSK lightwave systems, the frequency separation

between the two FSK frequencies 2Aw was assumed to be sufficiently large, so that the crosstalk

between the two filters was negligible [2], [9], [10]. For practical system design, however, such

an assumption is not valid. Specifically, in multichannel lightwave systems employing dual-filter

heterodyne FSK receivers, the frequency separation between the two tones is a significant system

design parameter which influences the number of channels that can be received for a prescribed level

of crosstalk [13J-[17].

The physical scenario under consideration is shown in Figure 2. Figure 2(a) illustrates the case

when the two frequencies ae sufficiently apart from each other so that there is negligible crosstalk.

The information-bearing signal may also contain phase noise. As the frequency deviation becomes

smaller the two information-bearing signals start overlapping (see Fig. 2(b)) and the performance

of the system under investigation deteriorates. One of the objectives of this study is to quantify

the required frequency deviation for a given linewidth and a fixed sensitivity penalty (e.g., 1 dB).

Another important case is shown in Figure 2(c). For a fixed frequency deviation, assuming the

two information-bearing signals have no phase noise, there is a certain performance level (and a

corresponding BER) which depends on the frequency spacing between w, and u0 . Clearly, if the
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frequency deviation is kept fixed, as the two signals are impaired by more and more phase noise, the

crostalk due to laser phase noise becomes more severe; and the system performance deteriorates

sharply. This physical situation is illustrated in Fig. 2(d). Another objective of this paper is to

quantify the laser linewidth which can be tolerated for a prescribed level of sensitivity penalty, such

as 1 dB, and for a fixed value of frequency deviation.

The physical scenario described above can only be analyzed if certain other system parameters are

also carefully engineered. Note in Figures 2(a) and 2(b), for example, that as the frequency deviation

gets narrower the optimum IF filter bandwidth required becomes smaller. Thus, to optimize the

system performance it is essential to evaluate the optimum IF filter bandwidth corresponding to

a fixed (but finite) frequency deviation and a fixed linewidth in the physical situation depicted by

Figures 2(a) and 2(b). Computation of optimum IF filter bandwidths is also a necessity for the

optimum performance evaluation of the system described by Figures 2(c) and 2(d). Obviously, one

can choose not to optimize the IF filter bandwidth; in that case, however, a certain sensitivity penalty

must be paid and the system performance is no longer optimum.

III. SYSTEM PERFORMANCE EVALUATION

This section is organized as follows. First, the baic receiver equations are given in Section III-A.

Then the SNR at the threshold comparator input is found in Section I-B. The BER is evaluated

in Section HI-C. Finally, in Section MI-D numerical results are presented.

A. Basic Receiver Equations:

The dual filter optical FSK receiver under investigation is shown in Figure 1. Following [9] and [101,

we assume the IF filters to be finite-time bandpas integrators, with impulse responses

halt)-- I o t] iftE[0, ] (12)

0 if it [0, f]
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and

# cos oot] if t E [0, 1
hB2(t) (13)

0 if t [0,

where a > 1 is a positive integer. The square-law device (SLD) is an envelope detector modeled by [9]

VF(t) = IU(t)12 - IU2(t)12

= zF(t) + YF(t) + ZF(t) (14)

where UI(t) and U2(t) are the complex amplitudes of the outputs of the IF filter 1 and IF filter 2,

respectively. In expression (14), ZF(t), YF(t), and zF(t) denote the signal-cross-signal, noise-cross-

noise, and signal-cross-noise terms, respectively. The postdetection lowpass filter is assumed to have

the following impulse response [9]:

hL(t) 6 (t - iT (15)
/-1

The output current of the IF filters at time t is

U1(t ff hsl(t) I(t)O

= 88 1(t) + nBi(t) IT < t < ( + 1)T (16)

and

u2(t) _ h8 2(t) * iT(t)

= sB2(t) + R82(t) IT < t < (I + 1)T (17)

where * denotes convolution; na(t) and n82(t) are the filtered versions of the noise, and ase(t) and

*B2(t) are the filtered versions of the signal, respectively; i.e.,
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nBI(t) -- hB(t) * n(t) IT < t < (I + 1)T (18)

nB2(t) hB2(t) * n(t) IT < t < (I + 1)T (19)

and

LBI(t) = hBl(t) * Ascos[w.dt + 4(t)J, IT _ t < (I + 1)T (20)

SB2(t) = hB2(t) * Ascos[wdt + .(t)], IT < t < (I + 1)T (21)

where d = wi or wd = wo. Hence the output of the summer is

VF(t) - F) + yF(t) + ZF(t) (22)

where

,.Q) = ,e(Q) + i2 1(t) - o2 (t) - ] 2(t) (23)

yF(t) = 4,(t) + i2 ,(t) - 42 (t) - ,i 2 (t) (24)

zp(t) = 2 [,sa(t),a 1 (t) + SB1(t)f(BI )- SB2(t)B2(t) - .12()AiB2()] (25)

In expressions (23(25), hB4(t) is the Hibert transform of saB(t), Ai~(t) is the Hilbert transform of

nBd(t), and d = 0 or d = 1. Finally, the output signal of the lowpass filter (LPF) toF(t) is

toF(t) = hL(t) * VF) (26)

The signal wF(t) is sampled at t = (I + 1)T and sent to the decision gate. The value of WF(t) at

t = ( + 1)T is denoted by wT. (decision variable) in the remainder of this paper.

B. The Signal-to-Noise Ratio:
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The SNR at the input of the decision gate (Figure 1) is defined as [9], [18]

m(when data = 1) - m(when data =0) (27)
a(when data = 1) + o(when data = 0)

where m and a are the mean and the standard deviation of wFT. We note that, strictly speaking,

the signal-to-noise ratio 7 is a meaningful pesformance measure for a Gaussian hypothesis test only,

whereas the probability density function (PDF) of wpr is non-Gaussian for both ONE and ZERO

symbols even when the linewidth is zero and the frequency deviation is infinite. In the case of zero

linewidth and infinite frequency deviation, the LPF is not needed, and the bandwidth of the BPF

is taken to be equal to the bit rate R4 . Conceptually, in this case WF(t) = vF(t). The probability

density function of vF(t) in this case can be found exactly. When Am is not equal to zero, and 2Afd

is finite, the impact of phase noise and crosstalk further complicates the PDF. Since the actual pdf

of wFT is non-Gaussian, it is dear that the value of 7 does not contain all the information needed

to evaluate the system BER exactly. Hence, using expression (27) for estimating the SNR at the

decision gate is an approximation; see Subsection C and Ref.[91 for an analysis of the accuracy of

this approximation.

Calculation of m and a is a long and a very complicated process. Therefore, we omit the in-

termediate steps of our derivations. Our analysis indicates that a general closed-form result can be

obtained for the signal-to-noise ratio at the decision gate:

-- (28)
afl

where
A 2 2-1 1 -  2 )(

m = A(20,) + + - 2 a(1 - bcot) + 2abin} (29)

and
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lO = F + o2F + U oZF (30)

In expression (30), XF, GoYF, and AZF are given by:

A [ a_ -11 16 80 ( -b)+( "

F - - (I - b2) - 12(1 - P)s(2AwT) (31)

YF Aal sin~ (32)
16 2 [ 2

and

,],,= A1602[ 2,a i~ l z..
216F s 4 + si 1+ coa + (z - )sin + (1- 2b) +

ZF 16 f ia-z2 8i, I1 a- -)sal

+1 {41 - a2][1 - bcosz] - 2abzsinz} + { + 1 (b - 1)}] (33)

where

T = Tla (34)

a = rAmr (35)

b = ezp(-a) (36)

x = 2Awr (37)

y= (a + aco: - ainx) (38)

k-(a + x2) (39)

and

1(2AwT) = e-na"T[o(q) + 7 L7sin(q)] for (40)

1 -w2AwT - w2AwTe-- 2AwT  for = 1
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In expression (40), w, , P, and q are defined as follows:

w, ; -0.0155 - 0.263/a 2 + 0.578/a (41)

P .z 0.27 - 1.5/a 2 + 2.22/a (42)

q = w,2AwT / - # 2  (43)

For the dual filter optical heterodyne FSK system under investigation, there is a simple relationship

between the peak IF SNR f, peak normalized signal energy Ep,, and the average normalized signal

energy per bit E., defined as

= = E.. (44)

The value of y in expressions (28)-(43) can be considerably simplified in several important practical

Casas:

Case 1: If AP = 0 (no phase noise), then - reduces to

2 2 0.3(45)
- ia) + +(i~j2 +)

Expression (45) predicts the performance of the FSK system under consideration when there is no

phase noise. Note that in this simple expression z = 2AwT is a design parameter. Hence, to obtain

a BER = 10-9 (which corresponds to y = 6), the IF filter bandwidth expansion factor a can be opti-

mized for fixed values of 2AwT. By using at values in expression (45), the impact of reducing 2AwT

on the sensitivity (the value of average signal energy in photons/bit) can be easily computed. As a

sanity check, we also note that as 2AwT gets sufficiently large, expression (45) reduces for aop = 1 to

1 (46)
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which is the result given in [9].

Case 2: If T C 1 24T, then -y becomes

2 (2A wTla) 47))
T +2 + 2,. irT (1+1-"-cs(24wT/a)) 10.5[i('rv;)s8(wT) + 1' . . ,=r= ,

A 245 Ot T2 6& 2waa4 _

Expression (47) predicts the SNR at the decision gate of a well-designed dual filter heterodyne FSK

lightwave system in presence of laser phase noise and finite frequency deviation. We note that for

a well-designed system, AvT < a < 2AwT. Clearly, expression (47) is an approximation for the

SNR. at the decision gate. The inaccuracy of expression (47) compared to the exact SNR results

given by expressions (28)-(43), however, is only 0.1 dB for a well-designed system. In Table I, simple

guidelines are provided for the choice of apt and 2&fdT for a given Av in well-designed systems.

C. The Bit Error Rate

A simple estimate of the BER can be obtained by using the Gaussian approximation [9], [18]

BER - Q() c e-z/2dz (48)

We note that expression (48) gives the accurate value of BER for a Gaussian hypothesis test only and

assumes that the decision threshold is selected optimally, i.e., at the intersection of the conditional

pdf's of twpy calculated for data = 1 and for data = 0. As mentioned before, in the problem inves-

tigted, the pdf of wpj. is generally non-Gaussian. It was shown in [9] that using Gaussian PDF's

for BER evaluation leads to an inaccuracy of approximately 2.6 dB. This, however, is not a serious

limitation in itself since it can be somewhat rectified using an empirical factor. Such an empirical

factor was shown to be useful in estimating the BER; in particular, it was shown that the inaccuracy

of the BER predictions of Gaussian approximation can be reduced to less than 1 dB over a wide

range of Unewidth values (up to 250%) when such an empirical correction factor is used. Hence, in

this paper we estimate BER as
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BER Q(7') =  e-z/2dz (49)

where k = 1.36 is the empirical factor used for reducing the inaccuracy of the Gaussian BER estimate

to 0 dB at AvT = 0.

It should be noted that though the absolute accuracy of the Gaussian approximation technique is

not perfect, a modified Gaussian approximation does provide a very useful analytical tool for studying

the impact of crucial system parameters such as finite frequency deviation and laser linewidth on

system performance.

D. Numerical Results

Figure 3 shows the optimum IF filter bandwidth values aopt versus normalized laser linewidth for

fixed values of the frequency separation 2AfjT. We observe that for a fixed linewidth, the required

ao.$ decreases as the frequency deviation becomes smaller. The physical reason of this phenomenon is

the so-called crosstalk. As the frequency deviation gets narrower, the IF filter collects more crosstalk

from the other signal. To maintain the same BER (let's say BER = 10- 9) as in the case of infinite

frequency deviation, a narrower IF filter bandwidth must be used in order to reduce the influence of

crosstalk. There is, however, a certain IF filter bandwidth value beyond which a further reduction in

IF filter bandwidth is detrimental because the information-bearing signal gets substantially truncated

and the loss in signal power becomes more than the loss in noise power. This tendency can easily be

observed in Figure 4(a). Figure 4(b) shows a." versus normalized frequency deviation for several

linewidths at BER = 10-'. A careful inspection of Figure 4(b) reveals that, at each fixed linewidth

there is a required &.pj and 2AfjdT for maintaining a BER = 10- 1. We emphasize that Figure

4(b) does not necessarily correspond to a well-designed system. When AvT = 1.0, for example,

Figure 4(b) indicates that both a.0 and 2AfdT can be as small as 3 and a BER = 10- 9 can still

be maintained. Such a system, however, is not a well-designed system. It is clear from Table I that,
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when AYT = 1.0, c0. = 6 and 2AfIdT -. 5.46 in a well-designed system.

Figures 5-9 show BER versus f for fixed linewidth values and for apt as the frequency devia-

tion varies parametrically. As expected, for a fixed linewidth value, the sensitivity of the system

deteriorates as frequency deviation becomes smaller. As an example, Figure 7 shows that, when

2Afh = 0.75Rb the sensitivity of the system is 3 dB worse than the ideal case (2Afd = oo). Note

that (see Figures 3 and 4(a)) apt = 1 for 2Afj = 0.75Rb as opposed to aoopt = 4 in the ideal case

when AvT = 0.16. The curves shown in Figures 5-9 are plotted using a values which are optimum

only at BER = 10- 9 . Hence, for BER 6 10- 9 the curves are not optimum. This is the main reason

for the better performance of the 2Afj = 0.75Rb curve compared to the 2Afd = 1.5Rd curve at BER

values larger than 10- 9 in Figure 8.

In Figures 10-14 the BER performance is shown versus f for a fixed frequency deviation value

as the laser linewidth increases. It can be observed from these Figures that for a fixed frequency

deviation, there is a finite degradation in sensitivity (or an increase in the required f for BER = 10-1)

as linewidth becomes larger. Figure 12, for instance, shows that there is approximately a 2.5 dB

sensitivity penalty when the linewidth increases from 0 to 16%, for a fixed frequency deviation of

2Afdr = 1.514. Another important result which should be observed from Figures 10-14 is that the

aforementioned effect becomes stronger for decreasing values of frequency deviation.

In Figures 15-17 the senitivity penalty (in dB) is plotted versus laser linewidth for fixed frequency

deviation values. Figure 15, for example, clearly illustrates that for a fixed linewidth value the

sensitivity penalty increases as the frequency separation between the two tones decreases. For a

linewidth of 50%, Figure 15 shows that the sensitivity penalty becomes more than 5 dB for a frequency

separation of 2Afd = 14 which is a drastic deterioration compared to 0.88 dB penalty in the ideal

case.

Figure 16 shows the sensitivity penalty of the system under investigation versus frequency devi-

ation 2AfdT for several laser linewidths when optimum IF filter bandwidth values are employed. It
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can be observed from Figure 16 that, for a 1 dB sensitivity penalty the required frequency devia-

tion is ; 2 =fd = 0.72P4 for zero linewidth whereas this number goes up to 2Afd = 3.4Rb for 50%

linewidth. We emphasize that in Figure 16 the a values used are always optimum. It is interesting

to contrast the results of Figure 16 with those where a values are not optimum. This is illustrated

in Figure 17. In Figure 17, each sensitivity penalty curve uses the a value which is optimum only

for the ideal case (aijf -. 0); i.e., when 2AfdT = oo. It can be easily seen that suboptimum a values

will make the frequency deviation requirement for 1 dB penalty worse.

IV. PHYSICAL INTERPRETATION OF RESULTS

The performance of the dual-filter heterodyne FSK lightwave receiver under investigation depends

on the IF laser linewidth, frequency deviation between the two frequencies of data transmission, IF,

and the bandwidth of the two IF filters. In this study we assume that IF is sufficiently large so

that the sensitivity penalty due to finite IF is negligible. This assumption also enables us to isolate

the impact of finite frequency deviation on system performance in presence of phase noise and shot

noise.

In this paper it is shown that the frequency deviation, laser linewidth, and the optimum IF filter

bandwidths ae interrelated system parameters. Furthermore, this relationship is quantified by the

results of our analysis.

It is interestig to note that, though they stem from different physical origins, the net impact of

finite frequency deviation on system performance is very similar to the impact of laser linewidth on

system performance. For each linewidth and frequency deviation value, there is an optimum IF filter

bandwidth. If for that fixed linewidth value the frequency deviation is decreased, more crosstalk

power is collected by each IF filter. For maintaining the same BER, a smaller IF filter bandwidth is

required. When the IF filter bandwidth is reduced, however, the information-bearing signal is also

truncated. For each inewidth there is a critical value of the IF filter bandwidth beyond which a
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further reduction in bandwidth implies more loss in signal power than noise power and, therefore,

a severe BER floor. Hence, for optimum system performance the IF filter bandwidth should be

optimized for each linewidth value and frequency deviation. If this is not done and the optimum IF

filter bandwidth for the ideal case (i.e. if a = aif _-pj) is used for all frequency deviation values, the

sensitivity penalty paid rises sharply as the frequency deviation decreases. This result is illustrated in

Figure 18 for a linewidth of 27%. In other words, larger-than-optimum IF filter bandwidth values may

have a very profound adverse effect on system performance. The physical reason for this degradation

is the excess crostalk power in addition to the excess shot noise collected by the IF filters when the

bandwidths used are larger-than-optimum.

Similarly, for a fixed frequency separation 2AdT, the optimum IF filter bandwidths required

increase as the linewidth increases. In other words, in order to maintain a BEN. = 10- 9 larger IF

filter bandwidths are required for larger linewidth values. Therefore, if one wants to pay a 1 dB

sensitivity penalty due to laser linewidth at a fixed value of frequency deviation, it is dear that there

is a maximum permissible laser inewidth. Beyond this AY value, the sensitivity penalty is more

than 1 dB. This phenomenon is a result of the interaction of the influence of crosstalk due to finite

frequency deviation with the influence of phase noise. Specifically, for larger values of linewidth a

larger value of at is required. As at, gets larger, however, the IF filters collect more crosstalk and

the sensitivity deteiorate.

The sensitivity penalty curves shown in Figures 16 and 17 also reveal an important physical

phenomenon. When the linewidth is zero, for example, the sensitivity penalty is zero at different

frequency deviation values; namely, at integer multiples of the bit rate. These values of frequency

deviation which give equivalent performance with infinite frequency deviation are known as orthog-

onal values. Similarly, a dual filter FSK system which uses integer multiples of bit rate for the

frequency deviation between the two information frequencies is known as an orthogonal FSK system.

Figure 16 clearly shows that, in such a system the sensitivity penalty has an oscillatory behaviour
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as frequency deviation becomes smaller, up to a certain frequency deviation (up to 2Afd = Rb).

Hence, surprisingly, the system performance for 2 Afd = R6, for example, is actually better than

the system performance at 2Afj = 2.5R6 . Note that the sensitivity penalty increases uniformly and

sharply for 2Afd < Rb. A simple mathematical derivation for the performance of the dual-filter

FSK system with zero linewidth is given in [21]. That derivation gives some insight into the reasons

of the mentioned oscillatory behaviour. It can be shown that when fl and fo are orthogonal the

two signals are uncorrelated in the signal-space constellation diagram. Therefore, as long as the

system is orthogonal its performance is not affected by the actual value of the frequency deviation.

For non-negligible linewidths, Figure 17 shows the same type of oscillatory behaviour for sensitivity

penalty. Note, however, that the ideal performance is never reached at any finite frequency deviation

value for non-negligible linewidths. In other words, the dual-filter FSK lightwave system is never

orthogonal in the true sense for finite (non-negligible) linewidths.

The sensitivity penalty results shown in Figures 16 and 17 can be checked with the classical

communication theory literature for zero linewidth [19]-[22]. In all these references, it is a well

established fact that the crosstalk is negligible when 2Afj.= Rb. This gives us a certain confidence

in the validity of the approach used in this paper. For non-negligible linewidths, however, it remains

to be seen how close the results predicted by our approximate theory are to those which will be

predicted by a much more exact approach such as [10].

Though in this paper a single channel dual-filter FSK lightwave system is studied, the results

obtained can give very rough estimates about the electrical domain channel spacings required in

a multichannel dual-filter FSK system. In such a system, clearly there will be adjacent channel

interference in addition to the co-channel interference due to finite frequency deviation.
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V. CONCLUSIONS

In this paper the impact of finite frequency deviation on the performance of dual-filter FSK lightwave

systems in presence of laser phase noise and shot noise is studied and quantified. Our analysis shows

that for zero linewidth, a frequency deviation of 2Afd = 0.7214 is required for 1 dB penalty. When

the linewidth is 50%, for 1 dB sensitivity penalty the required frequency deviation increases to

2Afj = 3.414. In this work we also show that for a fixed linewidth, the optimum IF filter bandwidth

decreases as the frequency deviation becomes narrower. As an example, for Av = 0.514, cfot reduces

from 7 to 3 as 2Ajd reduces from very large values to 1.5Rb. The BEE computations carried out

in this paper enable us to estimate the largest permissible linewidth values for a fixed frequency

deviation. One of the main strengths of this analysis is the fact that it leads to a simple closed-

form SNR expression in terms of the main system parameters. This closed-form simple expression

facilitates physical insight into the impact of finite frequency deviation on system performance and

provides simple guidelines for practical system design.

The results obtained in this paper are based on the Gaussian assumption for the distributions of

the two decision variables. Wechecked the results of our analysis for zero linewidth with the results

given by dasical communication theory and found a good match.

Factors not taken into account may change the results obtained in this paper. Receiver thermal

noise and fbite IF are among such factors. The ideal case of hfF > J4 was assumed in this study

in order to isolate the impact of finite frequency deviation. Further study is needed, however, to

quantify the impact of finite IF (in presence of laser phase noise, finite frequency deviation, and shot

noise) on the system performance of the dual-filter FSK lightwave systems.

The obtained results should be conceived as essential first steps for computing the electrical do-

main and optical domain channel spacing required for a prescribed sensitivity penalty in multichannel

dual-filter FSK lightwave systems.
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Table 1: Requirements for a well-designed receiver
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Figure Captions:

Fig. 1 Block diagram of the dual-filter heterodyne FSK system under investigation.

Fig. 2 Physical scenario under consideration:

(a) The frequency spectrum of the two information-bearing signals with infinitely large

frequency separation.

(b) The same frequency spectrum with finite frequency separation.

(c) The frequency spectrum of the two information-bearing signals with finite frequency

separation and zero phase noise.

(d) The spectrum in (c) with the same frequency separation and non-negligible phase noise.

Fig. 3 Optimum normalized IF filter bandwidth versus normalized linewidth for several values of

frequency deviation at BER = 10- 9.

Fig. 4(a) Optimum normalized IF filter bandwidth versus normalized linewidth for several values

of frequency deviation at BER = 10- 9.

Fig. 4(b) Optimum normalized IF filter bandwidth versus normalized frequency deviation for sev-

eral linewidths at BER = 10 - 9.

Fig. 5 BE. vemas IF SN!. for several values of frequency deviation when the linewidth is zero.

Fig. 6 BEl versus IF SNR. for several values of frequency deviation when AvT = 0.04.

Fig. 7 BER versus IF SNR for several values of frequency deviation when APT = 0.16.

Fig. S BE!. versus IF SNR for several values of frequency deviation and when AvT = 0.27.

Fig. 9 BER versus IF SN!. for several values of frequency deviation and AvT = 0.50.
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Fig. 10 BER versus IF SNE. for several linewidths and infinite frequency separation between fi and

fo .

Fig. 11 BEE. versus IF SNE. for several linewidths when 2Ad = 4.5Rb.

Fig. 12 BEE. versus IF SNR for several linewidths when 2Afd = 1.514.

Fig. 13 BER versus IF SNR for several linewidths when 2Afd = 0.75R6.

Fig. 14 BEE. versus IF SNE. for several linewidths when 2Afd = 0.31.

Fig. 15 Sensitivity penalty (in dB) versus normalized linewidth for several values of frequency

deviation at BEE. = 109.

Fig. 16 Sensitivity penalty (in dB) versus normalized frequency deviation for several linewidths at

BEE. = 10-1. All curves are computed using a = aOg at BEE. = 10-9.

Fig. 17 Sensitivity penalty (in dB) versus normalized fr-equency deviation for several linewidths

at BEE. = 10'. All curves are computed using the optimum a values for ininite frequency

separation (@MI...o0i).

Fig. 18 Impact of auboptimum, a values on the sensitivity penalty for AvT = 0.27 at BEE. = 1'

The solid Line corresponds to the curv computed with a." for all fr-equency deviation values

and the brobe maln corresponds to the curve computed with a~-,
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